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Abstract 

Representations of high-quality molecular electron 
densities are studied. An evaluation of restricted radial 
functions is made using a least-squares figure of merit, 
the molecular dipole and quadrupole moments, the 
electric fields at the nuclei, the electric-field gradients at 
the nuclei, an approximate energy and difference- 
density maps. For the heavy atom, a satisfactory 
representation has a fixed core function with a variable 
population and requires optimized dipolar core 
polarization functions, and an additional monopole 
term. The heavy-atom valence regions, and the H 
require expansions to at least the quadrupole level, with 
one Slater-type radial function per multipole and all 
exponents optimized. Additional valence radial func- 
tions and higher multipoles are required to give 
completely satisfactory difference-density maps but do 
not consistently improve the physical properties. 

Introduction 

It has been proposed (Stewart, 1976) that rigid 
pseudoatoms be used as a basis for the analysis of 
accurate X-ray diffraction data into static electron- 
density information. The static electron density is 
expressed as a superposition of pseudoatom densities 
centred on each of the nuclei of the molecule. Denoting 
the nuclear position vectors as R a and the associated 
pseudoatom density as Pa, the total density becomes 

p(r) = Y pa(r-- Ra) = Y Pa(ra). (1) 
a a 

The pseudoatom densities may be expressed as finite 
multipole expansions about the nuclei (Dawson, 1965), 

' /sin m~0~ 1 
Pa(ra) = ~'t m=-t ~ Pa'l(ra) P~(cos Oa) (COS m~0~)' (2) 

where p,,,t(ra) is a radial density function, and 
P~'(cos 8 a) is an associated Legendre polynomial. 
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Kohl & Bartell (1969a,b) examined the potential of 
this model, for obtaining electron-density information 
from electron-diffraction data, by studying diatomics. 
Another investigation (Bentley & Stewart, 1976) on 
diatomic molecules made an analysis of the molecular 
electron-density function, concentrating on expansions 
up to and including quadrupole terms, l =  2, while 
restricting the Pa,l(ra) to single exponential functions. 
They used either standard molecular exponents (Hehre, 
Stewart & Pople, 1969) for the valence radial functions, 
or had all exponents equal to a single optimized 
exponent. The work concluded that single exponential 
radial functions reproduce qualitative features of the 
electron density, but do not consistently provide 
accurate values for physical properties. By including an 
extra dipole deformation term for the core, electric 
fields at the heavy atom were greatly improved, but 
other properties were left unchanged. 

Previously, Stewart, Bentley & Goodman (1975) 
had shown that unrestricted radial functions lead to 
functional equations that accurately give all the 
molecular properties discussed by Bentley & Stewart 
(1976), if each pseudoatom is expanded up to the 
quadrupole level. Thus, a small finite multipole expan- 
sion can satisfy several static-charge properties. It is the 
purpose of this paper to examine the limitations of the 
restricted radial density functions revealed by Bentley 
& Stewart's (1976) study, and to show to what extent 
limited additions to the radial function can correct these 
deficiencies for the series of first-row diatomic hydrides 
from BH to HF. 

Method 

The methods used are similar to those described in a 
previous paper (Chandler, Spackman & Varghese, 
1980). For a diatomic molecule the calculated electron 
density is represented as the sum of two nuclear- 
centred multipole expansions. 

J K 

pCmo , = ~ pa,g(ra) Pj(COS Oa) + ~. pt,,k(rt,) Pk(COS 0b), 
J=0 k=0 

(3) 
© 1982 International Union of Crystallography 
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where Pj is a Legendre polynomial and pa,j(ra), pb,k(rb) 
are trial radial density functions. If H is taken to be 
nucleus b, then 

/1 k 

Pb,k(rb) = ~ Pn,k Nn,k r~ exp(--¢ n rt, ). (4) 
n=k 

With the heavy atom the electron density is partitioned 
into a spherical core and a set of valence functions. 
Thus the heavy-atom monopole density is represented 
by 

no 

Pa,o(r=) = Pc Pc(r~) + ~. Pn,o Nn,O ~ exp(--¢n ra)" (5) 
n=O 

In (5) Pc is a variable core population parameter, and 
Pc(ra) is from an accurate SCF ls atomic orbital taken 
from Clementi (1965). The necessity of a variable core 
population has been elaborated on by a number of 
authors (Coppens, 1977; Price, 1976; Bentley & 
Stewart, 1976). Higher multipoles on centre a have the 
same form as (4). 

After substituting (5) and (4) into (3) the density ffmo~ 
is fitted to an accurate molecular electron density, Pmol, 
so that the least-squares error 

8 = f (Pmol-  ~mol) 2 dr  (6) 

is minimized with respect to all populations, Pc and Pn,k 
and, if required, to selected valence exponents ~,. The 
goodness of fit is measured by the least-squares figure 
of merit, R w, 

Rw = [elf Pmol2 d~.]u2. (7) 

Since the calculated electron density is not constrained 
to contain the number of electrons in the molecule, 
another measure of the fit is the fraction of electrons 
accounted for by the model, F, and given by the sum of 
the monopole populations divided by the number of 
electrons in the molecule. After the least-squares 
procedure, P~,ol is rescaled by 1/F. However, this 
rescaling is not unique and it creates difficulties which 
are discussed more fully later. 

The choice of n in (4) and (5) for H and the notatior 
we use for multipole functions in the following text is 
given in a previous paper (Chandler et al., 1980). The r 
exponents, n, used there for the valence quadrupole, 
octopole and hexadecapole are also employed for the 
first-row atoms in this paper. With the valence 
monopole and dipole functions on the heavy atom, the 
choice of n is not so clear. A consideration of the 
atomic orbitals contributing to the valence density 
suggests that M2 and D2 functions would be needed. 
Test calculations were made on NH using a single M 0 
term on H and comparing the R w and F values obtained 
when single M 0, M~, and M2 functions were centred in 
turn on N. The best single monopole was M2. Similar 
calculations testing single D~ and D2 functions were 
made with M0 and Dx terms on H and an M2 term on 

N. There was little difference between the two dipole 
functions, and so, in anticipation of the need to employ 
a D1 function for core polarization purposes, the D2 
function was chosen as the initial dipole valence 
function. If a further radial function is added to give a 
two-term expression, the power of r of the additional 
function is incremented by one. An earlier study on H2 
(Chandler et al., 1980) found that both two- and 
three-term radial functions give very similar results, and 
so only single and two-term expansions are examined in 
the present paper. 

Four choices for the exponents (, were examined. 
(1) Scheme 1. The valence exponents for the heavy 

atom are the sum of 2s and 2p exponents from single-( 
atomic tabulations (Clementi & Roetti, 1974). For H 
¢= 2.0. 

(2) Scheme 2. Exponents are twice the standard 
molecular value (Hehre et al., 1969). 

(3) Scheme 3. All valence functions on one pseudo- 
atom share a common exponent which is optimized. 

(4) Scheme 4. All valence exponents are optimized 
separately for each radial function. 

The majority of cases studied in this paper used all 
multipoles up to and including quadrupole terms on 
both atoms. Where higher multipoles are used it is 
explicitly stated. 

Molecular wavefunctlons and physical properties 

The molecules studied are the diatomic hydrides AH 
(A = B, C, N, O, and F) with Pmol determined by the 
near-Hartree-Fock~quality wavefunctions of C a d e &  
Huo (1967). A comparison of the physical properties 
calculated from ffmol and Pmol is made for the molecular 
dipole moment, g, the quadrupole moment, Q, the 
electric fields at the nuclei, t,~ and tn, and the 
electric-field gradient at each nucleus, qA and qH" For Q 
the origin is taken at nucleus A. The values of these 
properties calculated from the SCF wavefunctions are 
given in Table 1 (Bentley, 1974). The calculation of the 
properties from the pseudoatom expansion PCmo ~ is 
straightforward and has been discussed by Chandler et 
al. (1980). Difference-density plots are also valuable in 
assessing the effectiveness of a pseudoatom expansion. 
The plots of APmol and Affmo I reported here are defined 
to be the difference between the molecular density and 
the sum of spherically averaged ground-state atoms at 
the same internuclear distance. This definition differs 
from that used by Bader, Keaveny & C a d e  (1967) in 
their discussion of the difference-density maps for the 
same molecules. Figs. 1 and 2 present the difference 
densities from Pmol as contour plots and as a three- 
dimensional (3D) graph. The 3D graphs complement 
the contour plots as some features are more con- 
spicuous on the 3D graph than on the contour plot. 
Several trends in these maps will be important in the 
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comparison with A/~mo ~ plots. Each of the molecules 
shows density features typical of covalently bonded H, 
with an accumulation of electron density behind the A 
nucleus and in the bonding region surrounding the 
proton. The region of net accumulation of electron 
density around the proton contracts with increasing 
atomic number of the first-row atom. However, the 
overall peak height near the proton does not increase 
monotonically with increasing A atomic number but 
achieves its maximum at NH (Fig. 2). There is a 
noticeable deepening, across the period, of the hollow 
beyond the proton, so that the innermost negative 
contour increases in magnitude from -0 .00195  e 
(a.u.) -3 for BH [1 e (a.u.) -3 = 6.74834 e A  -~] to 
-0 .0313  e (a.u.) -~ for HF. Also of interest is the 
gradual tendency for the built-up region behind the 
heavy nucleus to contract and bend around towards the 
proton and the built-up density in the bonding region 
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Fig. 1. Difference-density plots APamo~ from the wavefunctions of  
Cade & Huo (1967). Contour values are in e (a.u.)-3; successive 
contours differ by a factor of  2; positive contours ( ), 
negative contours ( - - - ) ,  zero contours ( . . . . .  ). The first 
non-zero contours indicate an absolute value of 0.000244 e 
(a.u.) -3. The heavy nucleus is indicated by a dot to the right of 
the centre and likewise the H to the left. 

T a b l e  1. Physical properties evaluated from the Cade 
& Huo (1967) wavefunctionsfor the diatomic hydrides 

AH 

The results are taken from Bentley (1974). 

Molecules 

Property BH CH NH OH FH 

p 0.682 0.618 0.640 0.701 0.764 
Q - 2 . 4 0 0  - 0 . 3 5 1  0.686 1.453 1.881 
eA 0.006 0.009 0.010 0.009 0.008 
e n --0.008 --0.011 --0.019 --0.024 --0.027 
qA --0.747 --0.943 --0.583 0.399 2.870 
qn 0.169 0.252 0.344 0.442 0.540 

until, at HF, the two are joined. Accompanying this is a 
change in shape of the built-up region behind A, from a 
diffuse rounded area which gradually flattens and 
contracts until, at OH, there is a small twin peak in the 
plane which becomes a pair of sharp peaks either side 
of the F nucleus in HF. These latter features are a result 
of the increasing number of N-electrons as the atomic 
number of the heavy atom increases. Another impor- 
tant feature of the APmol plots is the large changes in 
density observed near the heavy nuclei. This is in sharp 
contrast to the region around the H nucleus, and 

indicates that sharp polarization functions will be found 
essential in a description of the electron density on the 
A pseudoatom. 

Fig. 2. Three-dimensional difference-density graphs of APAmoHi in a 
plane containing both nuclei, from the wavefunctions of  Cade & 
Huo (1967). The heavy atom is on the right in each case. 



Full optimization of exponents 

Although work on single-term functions in schemes 2 
and 3 has already been reported (Bentley & Stewart, 
1976) some aspects of the results from these schemes 
are commented on in the following discussion. 
Populations of core density functions in schemes 1 to 4 
show a wide spread from 1.984 to 2.430 electrons with 
no obvious trends, although the populations tend to be 
closer to 2.0 as R w improves. The rescaled populations 
of the H monopole function, supposedly a measure of 
the net charge transfer in the molecules, vary from 
--1.2 to 2.4 electrons; a result which is not chemically 
realistic. A two-term density function does not give any 
marked improvement for schemes 1 to 3 in contrast to 
the ease of the H 2 molecule (Chandler et  al. ,  1980). 
When all exponents are optimized (scheme 4) there is a 
considerable difference between single- and two-term 
functions which is readily seen in the difference-density 
plots. Fig. 3 of the Affmo ~ for a one-term exponential 
function in scheme 4 shows most of the deficiencies 
e v i d e n t  in p l o t s  f r o m  s i n g l e - t e r m  f u n c t i o n s  p r o d u c e d  

/ / x ." 
/ ~ - .  x : 

, '  ," - - - - -  ; " ' - - : ' , " t  I i I I 1  I - X \ l  l f - ~ \ \ \  
, , , ,-, ~ , ,  . - . , ]  

, ,, , .  ' ~ . . : : - . ~ . , ~  

\ " x  x.  ~ - I i i  I 

BH " ~  ~ - - -  / ",, 

with schemes 1 to 3. One conspicuous feature is the 
spherical excess of electron density within 1 a.u. of the 
heavy nucleus for all the hydrides except BH, which 
has a similar deficit. These features are an artifact of 
the rescaling procedure, and will be discussed later in 
the paper. Deficiencies around the heavy atom are "also 
evident further out, where the difference density is 
much too contracted. However, the gross features 
around the proton are satisfactorily represented. 

Many of the difference-density-plot discrepancies in 
the valence regions, especially behind the heavy 
nucleus, are removed on adding an extra radial function 
to each multipole (Fig. 4) but the regions close to the 
first-row atom core are still poor. This improvement 
with two-term functions can be attributed to the extra 
flexibility in the basis set so that sharp and diffuse terms 
combine to partially satisfy the requirement for core 
polarization, allowing the diffuse terms to represent 
the valence regions better. In this respect it is 
noteworthy that the set of fully optimized two-term 
functions are different to the others (see Tables 2 and 
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Fig. 3. Difference-density maps, dffmo l, for single-term functions in 
scheme 4. See Fig. 1 for an explanation of  the contours. 
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Fig. 4. Difference-density maps, Affmo ~, for two-term functions in 
scheme 4. See Fig. 1 for an explanation of  the contours. 
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3). Many of the populations for functions on H are very 
large, even for some dipole functions. This appears to 
b e a n  indication of gross deficiencies in the basis set 
used on the heavy atom, which is then partially 
compensated for by the H-pseudoatom functions. 

Tables 4 and 5 give the exponents of all valence 
functions under discussion. The optimized exponents in 
scheme 3 are identical with the analogous set reported 

Table 2. Populations for the AH series 

One-term functions in scheme 4. 

Populations 

Heavy Pc 
atom M 2 

D2 
Q2 

H M0 
Dl 

Q2 

Molecule 

BH CH NH OH HF 

2.003 2.054 2.099 2.128 2.104 
2.474 3.724 4.817 5.552 5.928 

-0 .440 -0.249 -0.154 -0.196 -0.232 
0.292 0.236 0.125 -0.007 -0.116 

1.523 1.222 1.084 1.320 1.968 
0.205 0.160 0.142 0.291 0.754 
0.066 0.051 0.034 0.058 0.339 

Table 3. Populations for the AH series 

Two-term functions in scheme 4. 

by Bentley & Stewart (1976). From the tables, it is seen 
that the monopole exponents for single-term functions 
in scheme 4, on both A and H, are similar to those for 
one-term functions in scheme 3, whereas exponents of 
dipole and quadrupole deformation functions are 
appreciably different. Apparently, the optimization of 
exponents in scheme 3 is dominated by the monopole 
term on each centre, which is not surprising, in view of 
its large contribution compared to that of the higher 
order multipoles, and hence scheme 3 cannot hope to 
yield a suitable set of higher-order multipoles. In 
particular, dipole terms are usually more diffuse and 
quadrupole terms sharper than the corresponding 
monopole functions would allow. Extremely sharp 
quadrupole deformations are shown by OH and HF, 
which indicate the need for core polarization functions. 

With two-term functions on the A pseudoatom in 
scheme 4 monopole functions generally consist of one 
sharp and one diffuse term, with the more diffuse term 
having the dominant population. Both dipole terms on 
A have approximately equal exponents, of the size 
expected for core dipole polarizations, and the quadru- 
pole functions include sharp terms on B, N and F, but 
surprisingly not on O. 

While two-term functions with full optimization are 
necessary to reproduce the valence regions of the 

Heavy 
atom 

Populations 

Pc 
M2 
M3 
D2 
D3 
02 
03 
M0 
MI 
D1 
D2 
Q2 
03 

Molecule 

BH CH NH OH HF 

2.199 2.047 2.061 2.058 2.099 
-0 .044 3.157 3.362 4.082 4.403 

3.522 2.995 3.142 3.147 2.830 
0.066 0-077 0-074 0-070 0-062 

-0.094 -0.121 -0.126 -0.119 -0 .100 
0.435 0.074 0.001 -0.703 -0.076 
0.001 0.129 0.090 0.569 -0.100 

2.865 9.302 8.427 9.499 0.214 
-2 .542 -10.500 -8.992 -9.786 0.454 

0.474 1.210 0.698 2.616 1.385 
-0.771 -2.029 -1.240 -3.070 -1.283 

0.178 0.369 0.242 0.174 -0.651 
-0.331 -0.767 -0.519 -0.458 0.630 

Table 4. Exponents of valence functions in schemes 1 
to 3for the AH series 

Molecule 

Exponent BH CH NH OH HF 

CA a 2.50 3.18 3.84 4.47 5.11 
CA b 3.00 3.44 3.90 4.50 5.10 

CA 2.384 3.050 3.746 4.463 5.246 
~n 2.095 2.244 2.286 2.129 1.759 

CA 3.463 4.127 5.041 5.756 6.197 
Ca 2.538 2.611 1.759 1.616 1.537 

1-term 

2-term 

(a) Best-atom; (b) standard-molecular. 

Table 5. Optimized exponents of valence functions in scheme 4for the A H series 

Heavy 
atom 

Molecule 

BH CH NH OH HF 

Multipole 1-term 2-term 1-term 2-term 1-term 2-term 1-term 2-term 1-term 2-term 

M 2 2.435 10.387 3.073 1.872 3.747 2.352 4.474 2.921 5.272 3.900 
M 3 3.094 4.213 5.284 6-466 7.778 
D2 2.032 6.158 2.693 7.004 3.508 8.112 3-693 9.417 3.863 11.171 
D 3 6.221 7.064 8.079 9.432 11.235 
Q2 2.897 2-663 3.419 4.176 3.742 13.247 9-172 2.818 6.125 7.317 
Q3 12.656 4.203 5-131 3-797 2.858 

M 0 1.952 1.614 2.140 1.046 2.237 1.084 2.034 1.023 1.672 3.342 
M~ 1.596 1.306 1.377 1.351 3.419 
D l 2.386 1.983 2-755 1-569 2.982 1.904 2.428 1.388 1.851 1.709 
D 2 1.969 1.687 1.840 1.728 2.109 
Q2 2.960 2.419 3.452 2.050 4.094 2-356 3.714 2.695 2.169 0.602 
Q3 2.399 2.073 2.205 2.270 0.746 
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difference density, such improvements in the density 
are not necessarily reflected in the physical properties 
derived from these expansions. Figs. 5 and 6 sum- 
marize the least-squares goodness of fit and physical- 
property trends for the diatomic hydrides after com- 
plete optimization of basis set exponents. These should 
be compared with Figs. 1 and 2 in Bentley & Stewart 
(1976) which show the trends for single-term functions 
with exponents optimized according to scheme 3. The 
goodness of fit for a fully optimized two-term basis set 
reflects the density-difference plots in that it is superior 
for all of the series to R~ for any of the other bases 
studied. This is not so for the fraction of electrons 
counted. The only properties for which two-term 
functions in scheme 4 are uniformly superior to all 
other bases are the electric field and the field gradient at 
the heavy nucleus. This is expected for ca, since it is the 
only basis containing the sharp dipole terms, which are 
known to be needed to reproduce eA (Bentley & 
Stewart, 1974). The results obtained for en and qn 
show erratic behaviour, with two-term functions giving 
excellent values for CH, NH and OH, but being inferior 
for BH and HF. In fact little is gained in optimizing all 
exponents when compared with scheme 3. With the 
quadrupole moment, a single-term basis is clearly 
superior. What is surprising with en, qn and Q is that 
best atomic exponents give excellent results, clearly 

superior in most cases to standard molecular exponents 
and also to the bases with optimized exponents. The 
dipole moment is poorly reproduced by all the methods 
used, single-term functions in scheme 3 giving about the 
best results except for HF. 

Core deformation 

The poor results from the density basis sets discussed in 
the preceding section are due in part to a failure to treat 
polarization of the core region suitably, as was 
recognized by Bentley & Stewart (1974). Fig. 7 
displays plots of the core-deformation difference 
density for the first-row hydrides 

APcore = (1 aAn) 2 - (ls~) 2 (8) 

where la, m is the lo  orbital ofCade & Hue (1967) and 
ls~ is the near-Hartree-Fock ls atomic orbital of 
Clementi (1965). Deformation of the atomic ls orbital 
is extremely localized around the heavy-atom nucleus, 
becomes more contracted with increasing atomic 
number, and is predominantly dipolar in nature. The 
net effect is to displace charge into the bond from 
behind the heavy atom and close to the nucleus. The 
magnitude of this polarization is exceedingly small in 
terms of total charge displacement, but measured in 
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Fig. 6. Electric fields and electric-field gradients for the diatomic 
hydrides BH to HF, from pseudoatom expansions with all 
valence exponents optimized. See Fig. 5 for an explanation of the 
full and dashed lines. 
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electrostatic terms as the change in the electric field 
Ea, a encountered by the nucleus, above that due to the 
superposition of the spherical atoms, it is given by 

Ea, a = --f ZlPmol COS ~.-Z d 3 r (9) 

(Hirshfeld & Rzotkiewicz, 1974). Because of the 
presence of the r -2 term, small asymmetries in the 
electron density close to the nucleus lead to large 
changes in the electric field. Thus, to obtain correct 
descriptions of the electric field at the nucleus, it is 
necessary to include a sharp polarization dipole and 
perhaps a quadrupole. 

Previous studies based on the products of the lowest 
lying canonical ltr orbitals (Bentley & Stewart, 1974) 
found quadrupolar deformation functions on all heavy 
atoms except F, in HF and BF. This is surprising, as 
other studies on the first-row hydrides indicate a steady 
trend of behaviour from B to F and lead to the 
expectation of a significant population in a sharp F 
quadrupole term. This term can be expected to have 
components arising from ls3d and 2p2p products in 
higher cr molecular orbitals than the innermost l tr. An 
examination of the atomic basis functions employed by 
Cade & Huo (1967) indicates that the most likely 
candidates to give a sharp Q2 term similar to those on 
the other A atoms are the (trls~)(tr~aA) product, which 

yields Qz functions with exponents 5.78, 7.36, 8.57, 
9.84 and 11-31 for BH to HF respectively, and the 
(a2pA)(a~'p'A) product, yielding exponents 6.53, 7.58, 
8.56, 9.51 and 10.38. Of these possibilities, the ls3d 
product is much larger than the 2p2p product in terms 
of the population of the resulting Q2 density function. 
Converting the products of coefficients for the 
(O']sA) (a~aA) product to populations of the appropriately 
normalized Q2 function results in the values in Table 6, 
which are presented as contributions from the in- 
dividual molecular orbitals. Each molecular orbital 
yields quite different contributions with the l a orbital 
having by far the lowest populations and being zero in 
the case of HF. 

Contributions from all molecular orbitals decrease 
with increasing atomic number, and the contributions 
from 2a and 3tr molecular orbitals always have opposite 
signs, the 2a contribution determining the overall sign 
for the resultant ls3d product. This is opposite in sign 
to that of the l a contribution examined by Bentley & 
Stewart (1974). It is evident from Table 6, that there is 
likely to be a significant, sharp Q2 term observable in a 
multipole analysis of FH, similar to those observed for 
the other A H hydrides from the 1 a molecular orbital. 
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Fig. 7. Core deformation (8) in the first-row hydrides. See Fig. 1 
for an explanation of the contours• 

Since our least-squares procedure is not constrained to 
satisfy the condition 

f ffmol dr = N, 

where N is the total number of electrons in the 
molecule, ~o~ must be scaled to give the correct 
electron count. It has been customary in similar work 
to rescale PCmo I by l/F, the reciprocal of the fraction of 
electrons counted. This method was used in the studies 
described earlier in this paper, but its application to 
both the valence and core densities produces anomalies 
in the region near the nucleus. A close examination of 
the compact spherical peaks and hollows observed in 
the Affmo ] plots shows that they are correlated with the 

Table 6. Populations of the normalized Q2 function 
resulting from the (olsA) (a3d]) orbital product from 
the wavefunctions of Cade & Huo (1967)for  the AH 

series 

Exponent 
1 tr contribution 
20 contribution 
3e contribution 
Total 

Populations are x 106 electrons. 

Molecule 

BH CH NH OH HF 

5.78 7.36 8.57 9.84 11.31 
119 120 72 40 0 

--2134 --1319 -830  -572  --398 
842 685 484 323 213 

--1173 -514 --274 -209 -185 
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respective F values. Large spherical peaks are shown in 
functions with highly scaled core populations (i.e. 
F,¢  1), and when F values are greater than 1.0 
spherical depressions occur at the nuclei. 

Evidently, the practice of rescaling the electron 
density by 1IF is responsible for these erroneous 
features near the nuclei• Furthermore, an examination 
of the relationship between the unscaled core 
populations, Pc, and the least-squares figure of merit, 
R w, shown in Fig. 8, demonstrates that in general the 
unscaled core populations increase as R w decreases and 
the fit to the density improves. Also it can be seen that 
for any R w value the unscaled core population increases 
with atomic number• This behaviour can be antici- 
pated, as will be discussed further in the next section, 
and strengthens the conclusion that any rescaling 
procedure should not be applied to the core 
populations. 

Two scaling schemes which leave the core 
population unchanged were examined: 

RSI:  Only the valence monopoles are rescaled to 
satisfy the electron count of the molecule. 

RS2: All functions except the core monopoles are 
rescaled. 

Both scaling schemes were tested on the set of 
one-term functions from scheme 1. Results obtained 
indicated that RS2 consistently produces physical 
properties with a similar trend to the original scaling 
procedure, and the RS1 trend is usually significantly 
different. Plots of dp~o I are improved in the vicinity of 
the core, both RS 1 and RS2 producing almost identical 
plots• All further results reported in this paper are 
therefore based on the RS2 rescaling scheme. 

Core monopole representations 

A common feature of the valence density analyses 
developed by several authors is the assumption of a 
frozen core (Stewart, 1968; Stewart & Jensen, 1969; 
Coppens, 1971)• 

2-11 ,  

2.0q 

P~ 

2 - 0 7 ,  
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Rigid adherence to a fixed core population of 2.0 in 
refinements has now been abandoned by many investi- 
gators in favour of a variable core population which 
generally fits the data better (Price, 1976; Bentley & 
Stewart, 1976), and the reason advanced for this is that 
the electron density on or near the nucleus of an 
isolated atom has a contribution from the (2s) 2 SCF 
orbital product as well as from the (ls) 2. Thus a (ls) 2 
density populated with two electrons does not give all 
the charge on or near the nucleus in the isolated atom• 
It is useful to examine this mechanism in greater detail 
as it leads to an extension of the density basis set giving 
a much improved pseudoatom expansion for the AH 
molecules. 

Fig. 8 indicates that the unscaled populations of a 
( l s )  2 c o r e  density function obtained by least-squares 
projection of a theoretical molecular electron density 
are all greater than 2.0 for B to F. The population 
increases as the fit to the density improves. This 
behaviour is most readily understood by an exa- 
mination of the electron densities of the ground states 
of the first-row atoms where the effects of core and 
valence deformations do not complicate the issue. 

The spherically averaged electron densities of these 
atoms are analysed in a manner similar to that used 
with molecular densities. The density basis functions 
employed are a (ls) 2 function, C, as described earlier, 
the normalized monopoles M2 and M 3 and an addi- 
tional M~ function. The atomic wavefunctions are 
constructed from a 6s4p Slater basis taken from 
Clementi (1965). 

Coefficients obtained in the analysis are rescaled 
according to the RS2 scheme, which in this case, with 
no deformation functions, is identical with RS 1. Three 
separate basis sets with all exponents optimized were 
considered: (a) CM2, (b) CM1M 2 and (c) CM1M2M 3. 

Tables 7 to 9 present rescaled populations, R w and F 
for each of these sets. For the purposes of the present 
analysis the core population, Pc, can be divided into 

Pc=2.0+ ~ 
where 2.0 refers to the population required to fit the 
core density, (ls) 2, exactly and the remainder, 6, is 
required with the other monopole functions to fit the 
'valence' density. The amount by which the core 
population exceeds 2.0 in Tables 7 to 9, is the factor 

Table 7. Rescaled populations and measures o f  f i t  for  
the basis set (CM 2) projected into the first-row atom 

densities B to F (based on RS2  rescaling) 

Atom 
2.05 

Population B C N O H 
O.bl o.b2 0.'03 ' Pc 2.064 2 . 0 7 3  2 .081  2 . 0 8 8  2.094 

R~ M 2 2.936 3 . 9 2 7  4 . 9 1 9  5 . 9 1 2  6.906 
Fig. 8. Unsealed core populations as a function of the least-squares Measures of fit 

figure of merit R w. The filled circles represent BH, open circles Rw 0.0143 0.0131 0.0115 0.0107 0.0107 
CH, + NH, x OH and/x HF. F 1.026 1 .002  0 . 9 8 2  0 -958  0-939 
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required to fit the sharp peak of the atomic 2s orbital at 
the nucleus. This peak, although small compared to 
that of the Is orbital, is much larger than the remaining 
2s peak in the valence region, the ratio between the two 
varying from 51.6 to 54.3 for B to F. This sharp peak 
is readily fitted by the (ls) 2 function, since, appro- 
priately scaled down, it is an excellent approximation to 
the (2s) 2 function close to the nucleus. Further from the 
nucleus the scaled-down function overestimates the 
(2s) 2 density considerably and an M~ function of 
negative sign and high exponent is required to cancel 
this effect. This necessity for a moderately sharp MI 
function can be simply demonstrated by considering 
the single-ff wavefunction for B tabulated by Clementi 
& Roetti (1974). Expressing the corresponding density 
as a sum of monopoles gives 

pB= 2 .09M o (9.36)--  O. 18M~ (5.97) 

+ 2 .09M 2 (2.58) + 1.OM 2 (2.42) (10) 

where the radial exponents are in parentheses. The M~ 
monopole arises naturally from the product of the 2fis 
and X2s basis functions on squaring the ls and 2s 
canonical orbitals. 

From Table 7, the deficiency of the (CM2) basis set 
is evident in high R w values. The addition of an M1 
function improves the fit significantly for the lighter 
atoms (Table 8), but it is necessary to allow greater 
flexibility of the density basis set in the outer regions of 
the heavier atoms, and hence addition of an M 3 
function is essential (Table 9), and an excellent fit is 

then obtained for all atoms. Fig. 9 illustrates the 
resulting valence radial densities for the B atom, 
rescaled as in the RS2 scheme. The (CM2) set is quite 
inadequate, but both the (CM1M2) and (CMIM2M3) 
sets fit the electron density well; the former is rescaled 
more, causing it to appear a poor fit in the figure. The 
other first-row atoms, C to F, show similar behaviour. 

In the first-row atoms only the ls and 2s orbitals 
contribute to the electron density at the nucleus. If the 
least-squares fit to this peak at the nucleus is exact, and 
is made up only from the (ls) 2 core function, then the 
excess o fP  c above 2.0 would be given by 

SCF SCF 2P2s (O)lp,, (0), 
where ~cr (0)  and ~CF(0) are the densities at the 
nucleus of the ls and 2s orbitals (normalized to 1.0 
electron). From the atoms B to F, this ratio from the 
Clementi (1965) wavefunctions is 0.082, 0.091, 0.097, 
0.103 and 0.107. The values of Pc for the best atomic 
density fits, (CM1M2M3) in Table 9, all exceed 2.0 by 
more than the ratios given above, indicating that the 
electron density at the nucleus is overestimated in all 
cases, probably due to remaining small deficiencies in 
the density basis set. 

Atomic studies, then, indicate that addition of an M~ 
monopole to the heavy-atom density basis set will 
improve the valence density model for the diatomic 
hydrides. Inclusion of this term into the least-squares 
analysis should allow the other functions in the 
heavy-atom basis greater flexibility to describe the 
outer valence regions of the pseudoatom density. 

Table 8. Rescaled populations and measures of  fit  for 
the basis set (CMIM2) projected into the first-row 

atom densities B to F (based on RS2  rescaling) 

Atom 
Population B C N 

Pc 2.087 2 . 0 9 8  2.105 
M 1 -0.204 -0.152 -0.108 
M 2 3.117 4 . 0 5 4  5.003 

Measures of fit 
R w 0.0022 0.0032 0.0045 
F 0.975 0 . 9 6 7  0.959 

o F 
2.112 2.118 

-0.074 -0.051 
5.962 6.933 

0.0066 0.0087 
0.944 0.932 

Table 9. Rescaled populations and measures of  fit for 
the basis set (CM~M2Ma) projected into the first-row 

atom densities B to F (based on R $2 rescaling) 

Atom 
Population B C N O F 

Pc 2.086 2 . 0 9 5  2 . 1 0 2  2 . 1 0 8  2.112 
M 1 --0.830 --0.836 --0.776 --0.788 --0.631 
M2 2.648 3 . 2 0 2  3 . 7 2 0  4 . 2 7 6  4.693 
/I;/3 1.097 1 . 5 3 8  1 . 9 5 4  2 . 4 0 5  2.826 

Measures of fit 
R w 0.0007 0.0007 0.0007 0.0009 0.0008 
F 1.001 1 . 0 0 0  0 . 9 9 9  0 . 9 9 7  0-995 

Density fits with core polarization and M 1 terms 
included 

The effect of two core polarization terms, a dipole, and 
a quadrupole have been examined. Addition of these 
functions, abbreviated as D* and Q*, to the set of 

~ -..° 

~t-~ ~zt°~ ~ ~- caca /~ """ 

oo -....__ 
l l i i u 

ca .00 0.60 1.20 ' 1.80 2.40 J 3.00 
R ( a  u . )  

Fig. 9. Monopole expansions of the radial density [in e (a.u.) -3] for 
the B atom. The SCF density is given by the unbroken line 
( ), CM 2 expansion (---) ,  CM1M 2 expansion ( . . . . .  ) and 
the CM~M2M a expansion ( - - - - - - )  which is almost entirely 
coincident with the SCF curve. 
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one-term functions gives a basis consisting of a core 
function, C, one monopole, M2, two dipole, D~ and D~, 
and two quadrupole functions, Q~' and Q2, on the heavy 
atom, and a monopole, M 0, a dipole, D~, and a 
quadrupole function on H;  a basis which will be 
abbreviated as (CM2D*D 2 Q* Q21MoDI Q2). This was 
assessed using scheme 4, and the RS2 scaling pro- 
cedure. There is no marked improvement in R~ on 
inclusion of the polarization terms and most of the 
physical properties do not change greatly, but ea and qA 
values improve markedly. Difference-density plots 
Affmo ~ are given in Fig. 10. Comparisons with the 
analogous plots in Fig. 3 from a (CM2D2Q21MoD~Q2) 
basis with the earlier overall rescaling shows that the 
effect of adding core polarization functions is not very 
noticeable outside the core region. There is a 
reorganization of charge, most noticeable in the heavier 
elements of the series, leading to a charge con- 
centration along the bond direction. Where this was 
already present it is further developed, and in the other 
cases it is a new feature. However, in H F  there is a new 
feature in the appearance of the distorted n-like density 
just above and below the internuclear axis. In most 
cases though there is still an excess of charge, 
compared to the reference plots, Fig. 1, surrounding the 
heavy atom at moderate distances from the nucleus. 
This can be attributed to the absence of an M~ function. 
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Fig. 10. l)ifference-density plots for a (CM2D ~ D 2 Q* Q2 I MoD~ Q2) 
basis. For an explanation of the contours see Fig. 1. 

When an MI term is added to give a 
(CMIM2D*D2Q*Q:IMoD~Q~) basis and all 
exponents are reoptimized the physical properties are 
greatly improved (Table 10). Table 11 contains the 
corresponding optimized exponents. It shows the 
comparatively high exponents for the M1 functions, 
lying between those of the core and valence functions. 
With their small negative populations, these functions 
remove the excess electron density surrounding the 
heavy nuclei. A large improvement in R w is obtained so 
that all values are below 0.0045. Coupled with this is 
an increase in the core populations of approximately 
0.02 electrons. Physical properties are now more 
consistently close to the SCF values. Dipole moments 
for CH,  NH,  OH and H F  are very close to the SCF 
values; Q and e,4 are well reproduced for BH and CH,  
but the agreement worsens as the atomic number 
increases, and e . ,  qA and qn are well reproduced in all 
cases. 

Table 10. Physical properties, populations and measures 
of fit (based on RS2 rescaling) of the AH hydrides 
for the basis set (CMIM2D*D2Q'~Q21MoDIQ2) with 

all exponents optimized 

Molecule 

Population BH CH NH OH HF 
Heavy Pc 2.078 2 -089  2 -096  2.103 2.108 

atom M~ --0.477 --0.327 --0.222 -0-147 --0.087 
M2 2-184 3.032 3.903 4.628 5-432 
D* 0.007 0.006 0.005 0.004 0-004 
D 2 -0.734 -0.618 -0.512 -0.477 --0.408 
Q~ 0.050 0.060 -0.044 2.150 -0.039 
Q2 0.166 0.083 0.091 -2.261 -0.190 

H M 0 2.214 2.206 2.222 2.417 2.547 
D 1 0.405 0.526 0.654 0 -813  0-950 
Q2 0.101 o. 156 0.239 0.322 0.437 

Property 
R w 0 .0041  0.0040 0.0040 0.0041 0.0045 
F 0.996 0.996 0.997 1 . 0 0 7  1.014 
p 0.765 0.610 0.640 0 .701  0.766 
Q -2.555 -0.344 1 .080  2 .201  2.384 
e~ 0.009 0 -026  0.043 0 -058  0.071 
e. -0.027 -0.033 -0-033 --0.021 -0.008 
qA -0.752 -0-963 -0.463 0.114 2.934 
qn 0.132 0.212 0.320 0.443 0.585 

Table 11. Optimized exponents for 
(CMIM2D*D2Q* Q2 I MoD1 

the basis set 
Q2) 

Molecule 
Exponent BH CH NH OH HF 

Heavy M 1 4.053 5.576 7.374 9.622 12-992 
atom M 2 3.078 3.612 4 .201  4.841 5.476 

D* 8.659 11.591 14.414 17-475 20.220 
D 2 1.956 2.370 2.772 3 .051  3.367 
Q* 3.214 4.062 7 . 2 2 6  3.209 8-670 
Q2 3.291 4.162 6.162 3.184 3.542 

H M 0 1.714 1 .726  1 . 7 1 2  1 .653  1.599 
D 1 1.957 1 .956  1 .927  1 . 9 2 0  1.920 
Q2 2.626 2.578 2.425 2.385 2.287 
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From the AP~ol plots in Fig. 11 it can be seen that the in worse agreement than those from the previous 
core region has been improved, the valence regions are ..... single-term basis and they are often sufficiently far 
also better, and overall the comparison with the 
accurate difference densities in Fig. 1 is now favour- 
able although the agreement worsens as the atomic 
number increases. 

It was noted earlier (Fig. 4) that the heavier atoms 
demand the extra flexibility afforded by two-term 
functions before their difference-density plots resemble 
reference examples (Fig. 1). Accordingly, the basis set 
was further expanded to contain two-term valence 
functions. Least-squares correlation difficulties were 
encountered with the addition of a Q3 term on the 
first-row atom and the valence Q2 term was dropped 
leaving the basis ( C M 1 M 2 M 3 D * D 2 D 3 Q 2 Q 3 1 M o M 1  - 
DIDEQ2Q3). The asterisk is dropped from the Q2 term 
as it is no longer strictly a core polarization function. 
Again all exponents were reoptimized. The resulting 
least-squares parameters, populations and physical 
properties are given in Table 12 and the corresponding 
exponents in Table 13. From Table 12 it is seen that the 
R w values have again improved, so that they are now in 
the range obtained by Bentley & Stewart (1975) from 
generalized scattering factors. Physical properties are 
again consistently reproduced giving satisfactory agree- 
ment with the SCF values. Nevertheless, they are often 
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Fig. 11. Difference-density plots for a (CMIM2D*D2Q*Q21 
MoD~ Q2) basis. For an explanation of  the contours see Fig. 1. 

from the respective SCF values to make it doubtful 
whether it is possible reliably to reproduce physical 
properties from restricted radial functions. A plot of 
Affmo I Fig. 12 now agrees with Fig. 1 in all the major 
features. Remaining discrepancies, however, indicate 
the need for an octopole function on the H especially in 

Table 12. Physical properties, populations and measures 
of fit, based on R $2 rescaling, of the A H hydrides for the 

basis set (CMIM2M3D*D2DaQ2Q31MoMIDID2Q2Q3) 
with all exponents optimized 

Population 

Heavy Pc 
atom M~ 

M2 
M3 
D~ 
D2 
D3 
Q2 
03 

H M0 
Ml 
D1 
D2 
t22 
Q3 

Property 
Rw 
F 
/1 
Q 
eA 
E H 
qA 
qH 

Molecule 

BH CH NH 

2.078 2.089 2.096 
--0.626 -0.498 -0.403 

2.481 5-009 7.092 
-0.426 -1.881 -2.773 

0.006 0.018 0.017 
-0.605 -0.716 -0-555 
--0.259 -0.024 --0.039 

0.371 0-257 0.190 
-0.266 -0.230 -0.260 

2.346 1.547 1.222 
0.148 0.733 0.766 
0.225 0.775 0.756 
0.207 -0.331 -0.341 

-0.066 0.450 0.471 
0.142 -0.338 -0.357 

0.0032 0.0031 
1.005 1.008 
0.676 0.530 

-2.505 -1.115 
0.010 0-004 
0.003 --0.016 

--0.706 -0.862 
0.200 0.219 

OH HF 

2.102 2.106 
-0.532 -0.443 
12.637 15.656 

-6.853 -8.804 
0.013 0-012 

--0.386 -0.306 
--0.051 -0.054 
-0.006 -0.073 
-0.161 -0.191 

0.861 0.767 
0.785 0.718 
0.737 1.088 

-0.389 -0-738 
0-629 0-433 

-0.526 -0-340 

0.0026 0-0024 0.0018 
1.007 1.004 1.003 
0.547 0-573 0.743 
0-049 1.024 1.571 
0.001 0.001 -0.002 

-0.020 --0.026 -0.029 
-0-536 0.501 2.798 

0.306 0.397 0.500 

Table 13. Optimized exponents for the basis set 
(CM1M2M3D*D2D3Q2Q 3 I MoM1D1D2Q2Q3) for the 

A H series 

Molecule 

Population BH CH NH OH HF 

Heavy M l 3.736 4.908 6-165 6.592 7.794 
atom M 2 3.065 3.386 3.936 4.345 4.880 

M3 2.481 3.557 4.389 4.987 5.661 
D* 9.012 7.828 9.061 11.114 12.473 
D2 1.996 2.170 2.374 2.492 2.483 
D 3 2.108 8.160 8.465 8.622 9.489 
Q2 2.829 3.434 3.459 9.788 7.398 
Q3 2.484 2.645 2.944 2.507 3.236 

H M 0 1.677 1.932 2.079 2.286 2.332 
M l 1.675 1.935 2.147 2.300 2.351 
D1 1.763 1.762 1.869 1.948 1.799 
D2 2.845 1.686 1.806 1.944 1.966 
Q2 3.001 2.097 2.223 2.208 2.431 
Q3 3.672 2.343 2.507 2.530 2.744 
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BH, C H  and NH.  When an octopole function is added 
to the single-term basis for each pseudoatom giving 
(CM1M2D*D2Q2Q3031MoD~Q203), and all expo- 
nents are reoptimized, there is an improvement in 
difference density plots, Fig. 13. It is most evident 
around the H atom in the lower hydrides where the 
bulge in the electron-density contours, along the 
direction of the bond axis, and beyond the proton, is 
removed and the depression, also beyond the proton, 
conforms more closely to the reference plots, Fig. 1. 
The changes for OH and H F  are not so marked and the 
plots still have deficiencies around the heavy atom 
which, as has already been pointed out, seem to require 
at least two-term functions to remedy them. 

Least-squares populations, parameters and physical 
properties obtained with this last basis set are given in 
Table 14 and the corresponding optimized exponents 
are in Table 15. Although the R~ factors are all lower, 
with the greatest lowering occurring in BH, and the 
improvement decreasing with increasing atomic num- 
ber, there is no consistent improvement in the values of 
the physical properties when compared to the results 
from the analogous basis without the octopoles (Table 
10). Dipole and quadrupole moments are in slightly 
worse agreement with the SCF values, but the electric 
fields and field gradients at the nuclei are generally 
better. 
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Fig. 12. Difference-density plots for a (CMIM2MaD~D2D3Q2Qal 
MoM1DtD2Q2Q3) basis. For an explanation of the contours see 
Fig. 1. 

Table 14. Physical properties, populations and measures 
of fit (based on RS2  rescaling) for the basis set 
(CM~M2D*D2Q2Q3031MoD~Q203) with all exponents 

optimized for the A H series 

Molecule 

Population BH CH NH OH HF 
Heavy Pc 2.078 2.089 2.096 2.102 2.107 

atom M~ -0.347 -0.382 -0.299 -0.181 -0.106 
M 2 2.314 2.868 3.593 4.358 5.174 
D* 0.007 0.007 0.006 0 -005  0.004 
D 2 -0.605 -0.627 -0.527 -0.405 -0-305 
Q2 0.266 0.038 -0.085 -0.279 -0.051 
Q3 ~" 0-097 0.092 0-199 -0.145 
o 3 0.061 0.036 0 -025  0 . 0 2 1  0.014 

H M 0 1.954 2 . 4 2 5  2.609 2 .721  2-825 
D 1 0.332 0.685 0 - 9 0 5  1 .083  1.219 
Q2 0.087 0.273 0 -446  0.593 0.719 
O 3 0.015 0.063 0.146 0 -226  0.310 

Property 
R w 0.0017 0.0019 0.0021 0.0025 0-0032 
F 0.990 0.993 1 .001  1 -006  1.016 
# 0.674 0.709 0.775 0.913 1.044 
Q -2.386 0.177 1 .427  2.177 2.442 
~A 0.016 0.024 0 -032  0.038 0.039 
~n -0.025 -0.032 -0.031 -0.025 -0-004 
q~ --0.722 --0.868 --0.435 0.472 2.862 
qn 0.146 0.227 0.329 0.440 0.568 

population; 
]" Q3 on B refined to a very sharp function with very small 

it was therefore dropped from the basis set. 
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Fig. 13. Difference-density plots for a (CMIM2D*D2Q2Qa03 I 
MoD~ Q20a) basis. For an explanation of the contours see Fig. 1. 
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T h e  e l e c t r o n i c  e n e r g y  

Recently, approximate energy relationships for mol- 
ecules which are suited to applications with a pseudo- 
atom expansion have been published (Politzer, 1976, 
1979). Politzer (1976) investigated the expression 

E m o l : ~  Z Z A VA re°l, (11) 
atoms, A 

which relates the total energy of the molecule to the 
sum over the constituent nuclei of the nuclear charge 
multiplied by the total electrostatic potential at each 
nucleus (VAin°t). With VA m°t values from SCF wave- 
functions this relationship reproduces the SCF energies 
to within 2%. Bentley (1979) has used (11) to calculate 
electronic energies from experimentally determined 
electron densities. Politzer (1979) has subsequently 
improved this relationship by allowing the constant ~} to 
become a function of atomic number, 

Emol = Z kA ZA VA m°l. (12) 
A 

Values of k A are determined from application of (12) to 
numerical Har t r ee -Fock  calculations and are tabulated 
by Politzer (1979) fo r  some elements up to Bi. Using 
the exact Eatom and V~ t°m for H gives k H = 0.5. Politzer 
questions the use of a value obtained for a one-electron 
system in treating molecules containing many 
electrons. Therefore, he has calculated k H for the 
first-row diatomic hydrides from the wavefunctions 
employed in the p resen tpape r  (Cade & Huo, 1967), 
and atomic k A values. The resulting k n values are quite 
different from 0.5 except for OH. This difference has 
very little effect on the calculated energy however, as 
Vn m°~ is invariably close to - 1 . 0  and with Z n = 1.0, the 
contribution from the H nucleus to Emo ~ in (12) is 
understandably small. Calculating Emo ~ via (12) for a 
variety of wavefunctions, including some involving 

Table 15. Optimized exponents for the basis set 
(CMIM2D*D2Q2QaO31MoDIQ2Oa), for the AH series 

Molecule 
Population BH CH NH OH HF 

Heavy Ml 4-369 5.354 6.796 9.110: 12.258 
atom M 2 2.912 3.692 4.342 4.936 5.552 

D* 9.098 11.264 13.770 16.219 18.546 
D 2 1-997 2.456 2.899 3.410 3.938 
Q2 3.037 4.830 3.204 4.157 8.166 
Q3 t 4.852 5.659 5 -594  4.519 
03 3.243 4.223 5.153 5.842 6.782 

H M0 1.786 1 . 6 5 4  1 . 6 0 6  1 . 5 4 9  1.493 
DI 1.991 1 . 7 9 3  1 . 7 7 4  1 . 7 6 2  1.763 
Q2 2.499 2.166 2 -088  2.076 2.077 
O 3 3.427 2 -845  2.428 2 -324  2-246 

t Qa on B refined to a very sharp function with very small 
_ population; it was therefore dropped from the basis set. 

configuration interaction, reproduces the SCF energy 
to within an average deviation of 0 .2%,  regardless of 
whether k H is 0.5 or determined from the hydrides 
(Politzer, 1979). 

The expression (12) has been applied to all of the 
density function expansions discussed in this paper 
after rescaling with the RS2 scheme. The k H appropri- 
ate to each A H  molecule was employed. These 
approximate energies are displayed in Table 16 as 
values of the percentage deviation (%D) from the SCF 
energies. 

Values of % D  as a function of F, the fraction of 
electrons accounted for by the model are displayed in 
Fig. 14 and as a function of R w in Fig. 15. The 
calculated energy is not a function of Rw, but, with few 

Table 16. The percentage deviation between the SCF 
energies and energies obtained from pseudoatom 

expansions of  the density via equation (12) 

%D 
Expansion'[" BH CH NH OH HF 

(a) -1.05 -1.03 -0-90 --0.73 --0.76 
(b) 0.17 0.10 -0.37 -0.63 -0.68 
(c) -4.24 -3.11 -1.96 -1.69 -1.51 
(d) -0.45 -0.25 -0.36 -0.73 -1.18 
(e) -0.50 -0.61 -0.82 -0.95 -0.74 
(f) -1.14 -1.20 -1.27 -0.64 0.01 
(g) -0.05 -0.24 -0.50 -0.53 -0.13 
(h) -1.37 0.27 0.32 0.76 0.09 
(/) - 0 . 1 4  - 0 . 3 4  - 0 . 5 9  - 0 . 7 3  0.11 
(j) --0.22 --0.11 --0.03 0.43 0.68 
(k) 0.00 0.23 0.23 0.35 0.29 
(/) -0.39 --0.20 0.06 - - 

~f Key to the expansions, the number following the basis indicates 
the scheme used for exponent determination 

(a) 1-term, 1; (b) 2-term, 1; (c) 1-term, 2; 
(d) 2-term, 2; (e) 1-term, 3; ( f )  2-term, 3; 
(g) 1-term, 4; (h) 2-term, 4; 
(i) (CM2D~D2Q~Q21MoDIQ2), 4; 
(j) (CMIM2D~D2Q~Q21MoDID2Q2Q3), 4; 
(k) (CM1M2M3D~ D2D3Q2Q31MoM1DIDEQ2Q3), 4; 
(l) (CM~MED*D2Q2Q3031MoD~Q2Q3), 4. 
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Fig. 14. The percentage deviation of the approximate energy (12) 
from the SCF energy, as a function of the fraction of electrons 
counted. See Fig. 8 for code. 
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exceptions, the points in Fig. 15 are grouped in two 
areas. One, containing the majority of the points, shows 
energies more negative than wscF with moderately "-" mol , 
large R w values. The other group contains all the 
expansions with an M I term in the basis set, plus a few 
others, clustered in a region largely of positive %D, and 
very low R w. There is also a trend observable in this 
cluster; BH and CH have %D values close to zero or 
small negative, while OH and FH yield %D values 
greater than zero. This behaviour is seen in Fig. 14 to 
be due to the large F values for these expansions. The 
deviation of the calculated energy about ~scr  is an 

~ "  m o l  

almost linear function of F, with the various hydride 
points spread about a line passing through F = 1.0, 

j~-~ SCF %D = 0.0 so that for F close to 1.0, E~o ~ ~ "-'mol • 
Table 16 contains the %D values obtained for the 

hydrides. The average %D for each molecule is 0.81, 
0.64, 0.62, 0.72 and 0.58 for BH to HF respectively. 
Overall this represents an average %D of 0.67% which 
is comparable with the value of 0.2% obtained by 
Politzer (1979), and this figure includes particularly 
bad expansions such as those for one-term functions in 
scheme 2, (c), in Table 16. Scaling plays an important 
role in determining the accuracy of reproduction of 
ESCF For example, scaling ffmol by 1/F yields an mol • 
average %D of 2.19% and surprisingly the unsealed 
ffmol yields an average of 0.43% for %D. The large 
average percent deviation observed for densities re- 
scaled by 1IF is a further indication of the erroneous 
nature of this procedure. It is so evident here because of 
the dominance of the core electrons in determining the 
electrostatic potential at the nucleus. The contribution 
of a (ls) 2 core function populated by 2.0 electrons, to 
the atomic energy, calculated via (12) is between 65% 
and 82% of Eatom for the atoms B to F. 

Conclusions 

Simple extensions improve the accuracy of pseudo- 
atom expansions of electron densities from accurate 
SCF wavefunctions for the first-row diatomic hydrides 

2.0 ¸ 
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Fig. 15. The  percentage deviation of  the approximate  energy (12) 
f rom the S C F  energy, as a function o f R  w. See Fig. 8 for code. 

over those obtained by Bentley & Stewart (1976). 
These extensions have important implications for 
electron-density studies of experimental data. Some 
indefiniteness remains, however, in incorporating the 
conclusions into the treatment of experimental data, 
because no reciprocal-space analysis has been per- 
formed to gauge the effect of dealing with a finite Ewald 
sphere of data. Thus, the inclusion of sharp core 
polarization functions into the density basis was found 
to be necessary to improve the electric field and 
electric-field gradients at the heavy nuclei, but, because 
of their contracted nature, it is unlikely to be important 
in the experimental analysis. However, it is clear from 
our study that core populations need to be allowed to 
vary and not be held fixed at 2.0. Also the core 
population should not be included in rescaling designed 
to give the correct total electron count. This correction 
should only be applied to the valence populations. 
When the core population is rescaled spuriously large 
peaks and hollows appear around the heavy nucleus in 
the difference densities and, as a consequence, energy 
values calculated using Politzer's (1979) approximate 
relation (12) are poor. Another factor of major 
importance is the inclusion of an M~ function with an 
exponent midway between a core and valence function 
in the pseudoatom basis. This was needed in order to 
achieve consistent agreement of physical properties 
with the corresponding SCF values, and would play a 
similar role in experimental data analysis. 

Further additions to the basis set such as two-term 
valence multipoles or the inclusion of an octopole 
function do not bring about any consistent or sizeable 
improvements in the physical properties. However, 
these further refinements do make favourable changes 
to difference-density plots. Two-term valence functions 
are needed to obtain the correct difference-density 
features around F and O in OH and HF, and octopole 
functions are needed to refine the features around the H 
in BH, CH and NH. 

A disturbing feature of this study is the extreme 
variability to basis-set change shown by total electron 
populations on each atom (Tables 2, 3, 10, 12, 14) as 
measured by the sum of the monopole populations on 
each centre. It indicates that the present procedures are 
a shaky foundation on which to base a population 
analysis. Some comment ought also to be made about 
the stability of physical properties to density basis-set 
changes. The best agreement obtained here was for a 
single-ff basis set with core polarization functions, and 
an added M 1 function (CM1M2D*D2Q' ~ Q21MoD1 Q2). 
When either extra valence basis functions or a higher 
multipole in the form of an octopole are added there is 
an overall deterioration in the property values, even 
though R w values and the difference-density plots 
improve considerably. This erratic behaviour indicates 
that caution should be exercised when using a 
pseudoatom expansion to estimate physical properties. 



G. S. CHANDLER AND M. A. SPACKMAN 239 

MAS gratefully acknowledges the support of a 
Commonwealth Postgraduate Research Award for the 
duration of this work. 

We wish to thank the Australian Research Grants 
Commission for support. 

References 

BADER, R. F. W., KEAVENY, I. & CADE, P. E. (1967). J. 
Chem. Phys. 47, 3381-3402. 

BENTLEY, J. J. (1974). Charge Density Analysis of Coherent 
X-ray Scattering by Diatomic Molecules. Thesis, 
Carnegie-Mellon Univ. 

BENTLEY, J. J. (1979). J. Chem. Phys. 70, 159-164. 
BENTLEY, J. J. & STEWART, R. F. (1974). Acta Cryst. A30, 

60-67. 
BENTLEY, J. J. & STEWART, R. F. (1975). J. Chem. Phys. 63, 

3794-3803. 
BENTLEY, J. J. & STEWART, R. F. (1976). Acta Cryst. A32, 

910-914. 
CADE, P. E. • HUO, W. M. (1967). J. Chem. Phys. 47, 

614-648. 
CHANDLER, G. S., SPACKMAN, M. A. & VARGHESE, J. N. 

(1980). Acta Cryst. A36, 657-669. 

CLEMENTI~ E. (1965). Tables of Atomic Functions. Suppl. to 
IBM J. Res. DeE. 9, 2. 

CLEMENTI, E. & ROETTI, C. (1974). At. Data Nucl. Data 
Tables, 14, 177-478. 

COPPENS, P. (1971). Acta Cryst. B27, 1931-1938. 
COPPENS, P. (1977). 1ST. J. Chem. 16, 159-162. 
DAWSON, B. (1965). Aust. J. Chem. 18, 595-603. 
HEHRE, W. J., STEWART, R. F. & POPLE, J. A. (1969). J. 

Chem. Phys. 51, 2657-2664. 
HIRSHFELD, F. L. & RZOTKIEWICZ, S. (1974). Mol. Phys. 27, 

1319-1343. 
KOHL, D. A. & BARTELL, L. S. (1969a). J. Chem. Phys. 51, 

2891-2895. 
KOHL, O. A. & BARTELL, L. S. (1969b). J. Chem. Phys. 51, 

2896-2904. 
POLITZER, P. (1976). J. Chem. Phys~ 64, 4239-4240. 
POLITZER, P. (1979). J. Chem. Phys. 70, 1067-1069. 
PRICE, P. F. (1976). The Electron Density in Molecular 

Crystals. Thesis, Univ. of Western Australia. 
STEWART, R. F. (1968). J. Chem. Phys. 48, 4882-4889. 
STEWART, R. F. (1976). Acta Cryst. A32, 565-574. 
STEWART, R. F., BENTLEY, J. & GOODMAN, I.  (1975). J. 

Chem. Phys. 63, 3786-3793. 
STEWART, R. F. 8~. JENSEN, L. H. (1969). Z. Kristallogr. 128, 

133-147. 

Acta Cryst. (1982). A38, 239-247 

A Procedure for Joint Refinement of Maeromoleeular Structures with X-ray and Neutron 
Diffraction Data from Single Crystals 

BY ALEXANDER WLODAWER 

National Measurement Laboratory, National Bureau of  Standards, Washington, DC 20234, USA 

AND WAYNE A. HENDRICKSON 

Laboratory for  the Structure of  Matter, Naval Research Laboratory, Washington, DC 20375, USA 

(Received 2 July 1981; accepted 6 October 1981) 

Abstract Introduction 

A procedure is presented for the stereochemically 
restrained least-squares refinement of macromolecular 
structures with neutron and X-ray diffraction data 
from single crystals. This procedure has been tested by 
refining a model of ribonuclease A using neutron data 
to minimal spacings of 2.8 A and X-ray data from 
within 2.0/~, spacings. Joint X-ray and neutron 
refinement is well conditioned and tends to avoid false 
minima that may occur when a medium-resolution 
structure is refined solely with the neutron structure 
factors. 

Several methods for the refinement of the single-crystal 
neutron diffraction data collected on proteins have been 
tried in the last few years, but none of these has been 
completely satisfactory. The structures of metmyo- 
globin and carbonmonoxymyoglobin were refined by 
the real-space techniques at 2 A (R = 32%) and 1.8 A 
(R = 37%) resolution respectively (Schoenborn & 
Diamond, 1976; Norvell & Schoenborn, 1976). The 
structure of triclinic lysozyme was refined by Bentley & 
Mason (1981) using the least-squares technique of 
Agarwal (1978) and the idealization procedure of 


